Robust regularized M-estimators of regression parameters and covariance matrix
نویسنده
چکیده
High dimension low sample size (HD-LSS) data are becoming increasingly present in a variety of fields, including chemometrics and medical imaging. Especially problems with n < p (more variables than measurements) present a challenge to data analysts since the classical techniques can not be used. In this paper, we consider HD-LSS data in regression parameter and covariance matrix estimation problems. In particular, we consider and extend convex relaxation (or shrinkage regularization, diagonal loading) approach for M–estimation of regression coefficients and covariance (scatter) matrix. We demonstrate the utility of the methods in beamforming and tensor decomposition applications
منابع مشابه
Large dimensional analysis and optimization of robust shrinkage covariance matrix estimators
This article studies two regularized robust estimators of scatter matrices proposed in parallel in (Chen et al., 2011) and (Pascal et al., 2013), based on Tyler’s robust M-estimator (Tyler, 1987) and on Ledoit and Wolf’s shrinkage covariance matrix estimator (Ledoit and Wolf, 2004). These hybrid estimators have the advantage of conveying (i) robustness to outliers or impulsive samples and (ii) ...
متن کاملFuzzy Robust Regression Analysis with Fuzzy Response Variable and Fuzzy Parameters Based on the Ranking of Fuzzy Sets
Robust regression is an appropriate alternative for ordinal regression when outliers exist in a given data set. If we have fuzzy observations, using ordinal regression methods can't model them; In this case, using fuzzy regression is a good method. When observations are fuzzy and there are outliers in the data sets, using robust fuzzy regression methods are appropriate alternatives....
متن کاملAn adaptive method for combined covariance estimation and classification
In this paper a family of adaptive covariance estimators is proposed to mitigate the problem of limited training samples for application to hyperspectral data analysis in quadratic maximum likelihood classification. These estimators are the combination of adaptive classification procedures and regularized covariance estimators. In these proposed estimators, the semi-labeled samples (whose label...
متن کاملM-estimation in regression models for censored data
In this paper, we study M-estimators of regression parameters in semiparametric linear models for censored data. A class of consistent and asymptotically normal M-estimators is constructed. A resampling method is developed for the estimation of the asymptotic covariance matrix of the estimators. © 2007 Elsevier B.V. All rights reserved.
متن کاملRobust Hypothesis Tests for M-Estimators with Possibly Non-differentiable Estimating Functions†
We propose a new robust hypothesis test for (possibly nonlinear) constraints on Mestimators with possibly non-differentiable estimating functions. The proposed test employs a random normalizing matrix computed from recursive M-estimators to eliminate the nuisance parameters arising from the asymptotic covariance matrix. It does not require consistent estimation of any nuisance parameters, in co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013